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REVIEW OF NEUTRON TRANSPORT IN RANDOM MEDIA 
(Survey) 

by M. Makai 

ABSTRACT 

The survey reviews the methods available in the literature which 
allow a discussion of corium recriticality after a severe accident and 
a characterization of the corium. It appears that to date no one has 
considered the eigenvalue problem, though for the source problem 
several approaches have been proposed. The mathematical 
formulation of a random medium may be approached in different 
ways. Based on the review ofthe literature, we can draw three basic 
conclusions. The problem of static, random perturbations has been 
solved. The static case is tractable by the Monte Carlo method. There 
is a specific time dependent case for which the average flux is given 
as a series expansion. 





I. INTRODUCTION 

The Boltzmann transport equation describes a neutron gas in a host medium. Usually the 

stmcture of the host medium is considered as given. The computation assumes the nuclide density 

distributions ofthe host nuclei known; hence, also the macroscopic cross sections known. There are 

situations when the cross-sections are either unknown, or the investigation aims just at characterizing 

the uncertainty in the neutron gas distribution and its consequences. In reactor physics this is the 

case in the following problems: 

• We are interested in the consequences of the uncertainties of the fuel properties 

(density, geometry, composition). Each piece of fuel possesses slightly varying 

individual parameters. 

• In the calculation of the effectiveness of a concrete shield, it is reasonable to take into 

account the local density variations of the concrete. 

• Sometimes the material distribution of the host material can only be guessed. This 

is the case of a melted or heavily damaged core. 

* 
• Burnable poison usually has a grain structure. Only the form of the distribution 

(average, variance) is known. 

• The bubble distribution in a moderator is random by nature. When boiling occurs, 

little information is available on the statistics. (The problems mentioned in the latter 

two items are often treated by means of homogenization, this can not account for the 

finer details of the neutron distribution.) 

• Spallation is also discussed as particle transport in a random medium. 

• Actinide transmutation. The accelerator based transmutation of nuclear waste is also 

treated by that means. 



The fuel of the high temperature gas cooled reactor (HTGR) is often considered as 

random. [1,2] 

Neutral particle transport in a random medium occurs in other areas as well, including: 

• medical science (photon transport in binary mixtures); 

• meteorology (interaction of photons with clouds);[3] 

oceanography (water sediment interaction with light); 

geophysics (propagation of acoustic waves in stochastic media);[4] 

• Radiative transfer through mixed fusion pellets.[5] 

• Turbulent streaming is often described as a random phenomenon.[6] 

The above list is far from exhaustive. 

To be more specific, we mention a few particular situations where particle transport in a 

random medium is a possible model. 

There are no means to leam the material composition of a melted core after a severe accident. 

Any estimation on the Chernobyl lava composition, for example, must be based on the radom 

medium approach. The core composition and geometry prior to the accident is known, taking a 

given scenario the probability ofthe geometry and the material composition of the molten core can 

be estimated. From such a model the isotopic composition, the released energy and radiation 

becomes estimable. 

In operating reactors, it is vital to know the consequences of the uncertainties in such 

quantities asa fuel density, core geometry or flow rates. Using the random composition approach. 
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the expectation values and the variances can be estimated along with the expectation values and 

variances of such derived quantities as power peaking factors and reactivity coefficients. 

When radiation interacts with matter, the resulting material composition becomes 

inhomogeneous because ofthe various types of interaction. The lattice imperfections, the impurities, 

are random by nature, we know only the distribution function. In such problems, the random 

medium model is, in most cases, the only possible approach. 

In the context of the geological disposition of waste, in particular radioactive waste, the 

possible transport of the material in the geological environment of the burial site needs to be 

estimated. Due to limited sampling, the composition of the soils, the texture and fractures of the 

rock, and possible sources of water, are all uncertain. In this context, the random medium model 

may be very helpful. 

n. FORMULATION OF THE PROBLEM 

The problem of neutron transport in a random medium can be formulated as the solution of 

the following general operator equation 

M(5,x)$(ix) - A(S)«D(̂ ,x) = Q(^,x), (1) 

where ^ is a random parameter. If Q = 0 and X * 0, and we have an eigenvalue problem. If Q * 0 

and A = 0, and we have a source problem. In either case, the problem is stochastic, since the operator 

M depends on the random variable E,. When E, is fixed, we have a particular realization of the 

operator. Several realizations allow one to compute the averages, variances, correlation matrices, 

etc. The above outlined procedure would be a rather ineffective method of determining the statistical 

properties of the eigenvalue and eigenvector. The problem of determining the statistics of the 

eigenvalue and the eigenvector from the given statistics of the operator occurs in several areas of 

physics including solid state physics[7] and many body problems. [8] 



The above formulation is simultaneously too general and too specific. Too specific, because 

the material composition is taken as fixed in time. Too general, because when the elements ofthe 

matrix are random, then the matrix can easily be singular; and such essential properties as positivity 

or symmetry can easily be broken. The matrix is random in the sense that it is not individual 

elements that are random, but rather the matrix as a whole. This is because M reflects physical 

properties of the medium, and once the medium is given, all its properties have been fixed. 

Randomness occurs because we can only guess which material is at a given spacepoint in a given 

moment of time. 

Another model of the randomness of the medium is the following. Let us consider a random 

binary mixture of two immiscible components; and the cross-sections are assumed to fluctuate 

between two values that correspond to each component. For this case, the most frequently 

investigated mixing statistics are Markovian[9] or Gaussian.[10,11,12] 

There are three main approaches to the description of particle transport in a random medium. 

In the text, the original notation has been kept. For orientation. Table 1 gives a comparison between 

the basic assumptions in the three approaches. The line "assumption" specifies the additional 

assumption in the derivation. A detailed explanation is given when a particular method is discussed. 

The transport equation describes the interaction between a host material and a field of 

particles. A cross-section is assigned to every interaction. A random host medium is characterized 

by a random function rendering a material composition to each space point. Otherwise, a given 

cross-section as a function of the spatial position is a random function or stochastic process. The 

basicconceptsof probability theory can be found in Ref [13]. Thus, in general, the random medium 

is characterized by a random function, or a stochastic process, which assigns a material composition 

to each space point. Hence, the random material is described by the same characteristics as stochastic 

processes: correlation functions, averages, variances etc. The transport equation, however, requires 

specific data, such as conditional probabilities and transition probabilities. This problem is well 

described in Ref [14]. The task, therefore, is to find-the averages, variances, correlation matrices 

without running a large number of eigenvalue or source problems. That goal has been approached 

in several ways. 
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Table I. Comparison of the Major Descriptions. 

Characteristics 

medium 

statistics 

medium description 

formulation 

assumption 

dependent variable/ 

notation 

Pomraning 

binary mixture 

Gaussian 

°ab ' Pja ' °ba' °bb 

Liouville equation 

closure 

ensemble averaged flux 

4>(x) 

Sahni 

arbitrary 

no restriction 

p(R,T,alr,tP), X^^, 

master equation 

no 

conditional 

distribution function 

n(R,V,T,alr,v,t,P) 

Sanchez 

arbitrary 

no restriction 

P..P.P 

Liouville equation 

no 

ensemble averaged 

flux 

"PaCx) 

ffl. SOLUTION METHODS 

To date only the source problem has been considered in the literature. These works differ 

in regard to the following three points: 

the description of the random medium and the geometry; 

the sought quantities; 

the applied solution technique. 

One approach[15,16] considers the material distribution as an immiscible binary mixture 

govemed by Markovian statistics. In this approach, we find with given probability either material 

a or b, at any space point r. As a particle travels through the mixture, it passes through alternating 

packets of material a or b. The stationary Markov process means the following. Given that a particle 

is in material a at position r, the transition probability P ,̂, of finding itself (in the absence of 

absorption) in material b at position r+dr is given by dilX^, where A, is the transition intensity from 

material a to material b. Similarly, given that a particle is in material b at position r, the probability 

of finding itself (in the absence of absorption) in material a at a position r-(-dr is given by dr/A^. The 

transition balance is known as Kolmogorov equations (forward form) and is given by 



5Pab _ 

ar 
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ar 
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5Pbb _ 

ar 
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Pbb 

X. 
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P 
aa 

X 
Pab 

^b 

Pbb 

\ 

Pba 

X, 

(2) 

(3) 

(4) 

(5) 

The boundary conditions on these differential equations are 

Paafr.O = Pbb(r-r) = 1 

Pab(r.r) = Pba(r.r) = 0 , 

Under the stipulated conditions the correlation between the material distribution at the two points 

r and r' is given by exponential functions. [6] That approach has proven to be successful in several 

applications. [15] 

In Ref [17], the mixture of materials is not confined to two, and the material distribution is 

characterized by three functions. The first is the conditional probability p(R,T,a|r,t,b) which is the 

probability for the medium at R to be of type a at time T given that the medium at (r,t) was of type b. 

The second function is related to the motion of the neutron. In the time 6t, the neutron moves 

distance v6t, and the probability for the medium to change from type b to c is given by vbiX^^. The 

third function is defined as 

Vf.') = EV^.o (7) 
c 

and gives the probability for the material to change in any way in v6t. When we investigate a time 

independent case, the independent variable t should be left out in the above defined functions. 



Zuchuat and Sanchez and Sanchez,[18,14] considered the cross-sections to depend on a 

random variable E, and a mapping associates a material type to ^ at every point. That mapping is 

heavily exploited in the averaging. An exhaustive discussion ofthe problem of characterizing the 

randomness can be found in Ref [14] where the following notation has been utilized: 

p^(x,y) = the probability for the interval (x,y) to be in material a. 

Pab[x.y) = the probability of undergoing a transition a-b in [x-dx,x] and to have (x,y)eb. 

Pab(x>y] = the probability of undergoing a transition a-b in [y,y+dy] and to have (x,y)ea. 

PabcCx.y] = the probability of undergoing a transition a-b in [x-dx,x], have (x,y)6b and 

undergoing a second transition b-c in [y,y-l-dy]. 

Pab(x.y) is the conditional probability of entering material b at y, given that (x,y)ea and that 

there is a transition at point y from material a into a different material. Point x is a point of transition 

for the realization 5 if 

lim ^(x-e) * lim 5(x+e) . (8) 
£-0 £-0 

The underlying assumptions are as follows: 

A. The measure of the set of realizations that have two or more transitions within an 

interval of length dx goes to zero with dx. 

B. The conditional probability for the material distribution to the right of position x, given 

that X is a transition point, is independent of the material distribution to the left of x. 

C. The conditional probability for the material distribution to the right of an arbitrary 

position X is independent of the material distribution to the left of x. 

Under these conditions, the local densities turn out to be symmetrical: 



Pabt'') = Pab(x] • (^^ 

For applications to the integral transport formalism, it is more suitable to trace back statistics to 

chord length distributions. Sanchez et al.[16] have introduced the following additional probabilities: 

QJx,y) = conditional probability of having (x,y)€a given that there is a transition into 

a at point x. 

Qa(x,y] = conditional probability of having (x,y)6a given that there is a transition into 

a at point y in the direction of decreasing x values. 

fa*[x,y] = conditional density of probability of having a chord of material a of length y-

X to the right of point x given that there is a transition into a at point x. 

fa [x.y] = conditional density of probability of having a chord of material a of length y-x to 

the left of point y given that there is a transition into a at point y in the direction 

of decreasing x values. 

These conditional probabilities can be expressed by the P̂  etc. probabilities introduce above: 

Qalx.y) = P,a,a[x.y)/Pa,a,(x) (10) 

Qa(X-y] = Pa(a)('''y]/Pa(a)(y) (11) 

C[x,y] = - ayQ,[x,y), f; = a^Q^(x,y] . (12) 

Devooght[19] adopted the stochastic geometry viewpoint. The stochastic geometry, as 

described in Ref [20], considers the random media as a distribution of convex, non-overiapping 

grains, obeying Poisson distribution. 



Lovejoy et al.,[21] described the material as multifractal. In the cloud-photon interaction, 

which is the topic of Lovejoy et al., a large stmcture is broken up into smaller substmctures. The 

density is modulated multiplicatively in each substmcture by a random factor. Another equivalent 

model is to specify the scaling of the statistical moments of the density. 

A simple powerful model is the rod (slab) model discussed e.g., in Refs. [9] and [10], utilized 

in Refs. [12,11]. 

The general problem allows for varying random composition in time. [22,23] That renders 

the problem extremely difficult since while a neutron flies towards the next collision, the material 

composition of the medium may randomly change. 

The recriticality problem is formulated as follows. We consider a volume V filled out by a 

random material but the composition is constant in time. The random distribution is representable 

in two fashions. The first one assumes that a given infinitesimal volume dV may be filled by one of 

a given set of materials. Hence every space point is associated with a given material. The second one 

assumes that the material at every point r is a mixture of N materials and the ratios of the nuclide 

concentrations are random. Each material possesses a given microscopic cross-section. The 

unknowns are the expected value of the eigenvalue X or k̂ ff, and its variance. 

Before dealing with the posed problem, a survey ofthe technique available in the literature 

is given. 

1. Master equation 

It is the average neutron number or neutron flux that obeys the transport equation. When one 

is interested in the statistical aspects, an equation governing the probability distribution is needed. 

As shown by L. Pal,[24] an equation can be obtained for the generating function of the neutron 

number. Later that technique has been applied to noise analysis problems by Williams[25] and 

Lewins.[26] Pazsit[27,28] has derived simultaneous master equations for the forward and adjoint 

problem with given cross-sections. It has been Sahni who applied that technique in Ref [22] to the 
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derivation ofthe equation for the generating function ofthe neutron density in a stochastic medium. 

Munoz-Cobo et al.,[28] derive the equation for the ensemble average by means of the master 

equation. 

In Ref [17], the joint probability (Q„) for exactiy n neutrons to be present in a volume 

element dR with velocities in an element dV around the phase point (R,V) at time T and the medium 

at (R,T) to be of type a when one source neutron is found at the space point r with velocity v at an 

instant of time tsT, the medium at (r,t) being of type p. This probability merges the properties of the 

material and ofthe neutron field. This is clearly seen from the relationship 

EQ„(R,V,T,a|r,t,P) = p(R,T,a|r,t,p) . (13) 

Making use of the considerations in Ref [24], Sahni arrives at the following set of Chapman-

Kolmogorov equations: 

•— + vV -̂  v(o|,(r,v,t)+Ap(r,t))]Q^(R,V,T,a|r,v,t,P)dRdV 
5t 

v E Ap./r,t)Q„(R,V,T,alr,v,t,P)dRdV + vo'p(r,v,t)6„op(R,T,a|r,t,P) 
Y 

+ v/'ap(r,v,t)fp(v'-v)dv'Q„(R,V,T,a|r,v,t,p)dRdV 

+ v E Op(r,v,t)p^ p(v) | | |X|i(v:Vj,V2,...,v )̂dv,dVj .dv^x 

E E E Q;,(Vi)Q;(v,)...Q;(v^)(dRdV)". 

In the last term, 

Q;(R,V,T,a|r,v,t,P)dRdV (15) 

is the conditional probability for exactly n particles to be present in dRdV around the phase point 

(R,V) at time T given that the medium at (R,T) is of type a; (r,v,t) are the source coordinates. Only 
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the velocity coordinates have been written out explicitly in the two terms of Eq. (14). The second 

equation reads as 

l5t 
-1- vV -̂  vA.p(r,t) p(R,T,a|r,t,p) = v E A„,Jr,t)p(R,T,a|r,t,Y) (16) 

Q„ can be looked upon as a Green's function. [27,28] By means of Q„, the generating function can 

be calculated, and we obtain the following equation for the average value of the flux: 

N(R,V,T,a) = E f[S(r,v,t)pp(r,t)n(R,V,T,a|r,v,t,P)drdv 

Here, the Green's function satisfies the following equation: 

(17) 

aT 
A + VV -̂  v(o'„ (R,V,T) * A,„(R,T))] n(R,V,T,alr,v,t,p) 

= V E A^_„(R,T)n(R,V,T,Y| r,v,t,P) 

•̂  rV'Op(R,V',T)fp(V' - V)n(R,V'T,a| r,v,t,P)dV' 

+ /•V'o^(R,V',T)v„(V') rXp(V':V)n (R,V',T,a | r,v,t,P)dV' 

(18) 

+ 6„p 6(r-R)5(v-V)6(T-t). 

If the random medium is stationary, i.e., is constant in time, the time derivatives should be canceled 

and all time variables should be left out from all the argument lists. Now the Chapman -Kolmogorov 

equation for the medium correlation reads as 

[-vV ^ vyr)]p(R,a|r,P) = v E V/r)p(R,a|r ,Y) . (19) 

From that equation, the velocity cancels out. The remainder expresses that the effect of a small 

change in the source coordinate r is identical to the change due to the material correlations. The 
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author believes that the formalism elaborated by Sahni is suitable for further analysis, and it is hard 

to understand why the people involved in stochastic transport have not pursued further that line. 

2. Liouville equation 

The distribution of the average density of the neutron gas is described by the Liouville 

equation in phase space. An equation for the ensemble average or higher moments of the neutron 

gas density distribution is given by R. Sanchez, G. Pomraning, and A. Prinja. 

The basic problem with an approach based on the Liouville equation is related to the 

appearance of cross-correlations in the equation; and, it is not obvious how to assure the consistency 

of the closed system and derive a feasible algorithm for computation. 

Below we consider the source problem, i.e., X=0 in Eq. (1). We introduce the following 

notation. Let M, $ and Q denote the average values: 

M = <M> = E P ® M ( 0 , 

* = < * > = E P(0*(5) (20) 

Q = <Q> = E P(OQ(?), 
i 

and we write M ( 0 = M -̂  AM(0; 4>(5) = * + A*(0 and Q(C) = Q + AQ(0. Now, by averaging 

Eq. (1), we get 

M * + <AMA$> = Q . (21) 

To express the cross-correlation term, we solve Eq. (I) for AO: 

A$ = * + (M+AM) 'Q + (M+AM) 'AQ, (22) 
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and multiply it by AM, after averaging, we get 

<AMA<I» = <AM(M + AM)"'>Q + <AM(M + AM)-'AQ>. (23) 

Substituting this correlation into Eq. (21), we get an expression for the average flux: 

•t = M">(l - <AM(M + AM)^'>)Q - M"*<AM(M + AM)"'AQ>. (24) 

The average flux has two components. The first one depends on the statistics (average and higher 

moments) of the transport operator that are applied immediately on the average source. If AM=0 then 

the first term reduces to M'Q, the solution ofthe non-stochastic medium problem. The second term 

involves cross-correlations of the source and the transport operator. If the source and the 

surroundings are statistically independent, we get 

<AM(M + AM)"'AQ> = <AM(M+AM) '><AQ> = 0 . (25) 

The average flux, from Eq. (24), is given as an infinite series.[6] Using the fact that the inverse to 

the streaming operator, which occurs in M, is an integral, the average flux is given by an integral 

equation along with correlation functions of the stochastic cross-sections. Using the Fokker-Planck 

approximation, the integral operator can be localized. 

The ensemble averaged flux can be evaluated in a simple case, see Ref [22]. Write the 

neutron transport equation as 

0(r) = f(F(r') + Q(r')) ^ ' " ' " dr^ , (26) 
i 4Tt|r-r'p 

where $(r) is the scalar flux at r and F(r') is the collision density at r': 

F(r') = S,(r')$(r') . (27) 
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T(r,r') is the optical distance between r and r'. The flux is given by the Neumann series 

*(r) = fQ(r ' ) -^ - d r ' 
i 4 7 r | r - r f 

- E K S ( r , ) - ^ 
n=i •̂  4 7 i | r - r 

/ dr,S,(r,) - ^ -X 

|dr 'Q(r ' ) 

t(r.r,) 
e 

-X 
V - r ; i | i i . | 

(28) 

V ^"I ' l '2l 

, W , A e 
47t|r„-r 

We have to average the RHS of Eq. (28) over the ensemble. Let us assume no absorption and take 

2;,=0. Now, the contribution of the n-fold integral is finite only if the points (r,r|,r,,...,r„,,) are in 

materia! a while material at r„ can be of either type. Likewise in the first term r must be in material 

a and there is no restriction at r'. If the free flights are uncorrelated, the ensemble average will be 

(S,(r)S^(r,))...S,(r„.,)e-*•''' xe-*"'^'..e-*"•'"-''> 

= p , S : , { e - " V . r , e A ) x (e-""•'='!r,.r,eA) x (e-•'"'"-'ir„.r„.,eA) 
(29) 

where A denotes the set of space points with material a. The factor p^ accounts for the probability 

that the point lies in medium a. With the help of Eqs. (26) and (27), the ensemble averages can be 

evaluated, they will contain exponential functions. If the flights are correlated, the ensemble average 

will be a product of averages, and we may need assumptions, such as closure, to make the equations 

solvable. 

As we have seen, the Liouville equation involves a term with the correlation <AMA$>. 

Prinja[IO] has proposed a closure based on the formal solution to the space dependent problem 
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-^5W + M(x)$(x) = 0 , (30) 
dx 

in a half space, because as Pomraning has pointed out, there the flux at x=0 is deterministic. In that 

case a proper closure can be obtained in the forward-backward scattering rod model (see Ref [6]). 

When the medium is large and static and only scattering occurs, the flux will be the sum of 

a large number of independent terms. Mello[30] used the central limit theorem and showed that the 

flux distribution is then normal. 

3. Perturbation Theory 

A perturbation is small if 

|1AMM"1||<1. (31) 

Then, the solution to the source problem takes the following form 

O = M ' Q - / E ( - 1 ) " R " * ' \ M - ' Q - / E ( - 1 ) " R " * ' A Q \ • (32) 

Here, R = MAM. When AM = 0, the solution reduces to M''Q. The second term depends solely 

on the correlation ofthe operator, whereas the third term contains cross-correlations between source 

and the operator. Reference [6] suggests selecting M as the streaming term plus the average value 

ofthe cross-section matrix: 

Mx = -QVx + Sx . 

Since the inverse to that operator is known, the solution is an integral. Stopping after the linear 

terms in Eq. (24), we get 
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d<*> 

ds 
<S><$> * jdse'"^''"^''*'[<M(s)AQ(s,)> - <M(s)M(s,)><$(s,)>] = <Q> . (34) 

The expression can be simplified by the Fokker-Planck approximation, when 

N 
«,(s,)> = | : i . ( s , - s ) " A : ^ * ^ , (35) 

1^ n! ' ds" 

is substituted into Eq. (34). The resulting equations have been studied for two component mixture 

of Markovian statistics. [6] 

As to the eigenvalue problem, an exhaustive discussion based on linear perturbation theory 

can be found in Ref [31]. Write 

M $ = (A •̂  AF) It = 0 , (36) 

where F is the fission (production) operator and A contains the remaining terms of the operator. If 

the average state is assumed critical: 

<M>* = (A„ + X^F^) O = 0 . (37) 

The effect of fluctuations in the medium is twofold. The global effect manifests itself in the new 

eigenvalue: 

XiE) = A„ + p , (38) 

where the stochastic quantity p is the reactivity perturbation. The local effect manifests itself in the 

flux perturbation. Szatmary's goal is to determine the autocorrelation function 
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R^^(r',E',r,E) = <A(l>(r',E')A<D(r,E)). (39) 

Introducing the notation 

^ = AM<$>, (40) 

we get the following correlation functions: 

^W ^ff '^f*' ^Op' '^f* • ('^'^ 

In the context of linear perturbation theory, the following relationships hold: 

<M>R^^(r',E',r,E) = - R^^(r',E',r,E) + R4,p(r',E')F„<0(r,E)> (42) 

<M'>R^^(r',E',r,E) = - R^^(r',E',r,E) + R^^F ;<$(r',E')> (43) 

(<0*>,R..) • 
R^„(r,E) = * * ^ (44) 

^ (<0*>;F„<<I)>) 

, , (<$*>;Ra,.(r',E',r,E)) 
Rop(r',E') = ^ ^* (45) 

(<$*>;F„<0>) 

Here, an operator with prime denotes an operator acting on the variables with primes. The 

equations form a closed system, and the correlations can be determined. The scheme starts with R^̂  

which is given and from Eqs. (44), (43), (45) and (42); sequentially, we determine R̂ p̂, I^^,, Rop, and 

R ,̂!,. Szatmary has remarked that the traditional calculational model is applicable for the 

determination of the correlation functions after minor modifications are made. 
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rv. AVERAGING 

According to Sanchez,[23] a rigorous derivation of the equation for the ensemble averaged 

flux has only been obtained for the collisionless, stationary case with stationary Markovian[6] 

statistics. In the genera! case, the ensemble averaging leads to an infinite set of equations. The 

structure of the equations depends on the material properties. When scattering is allowed, only 

approximations (closure) are proposed. 

It is advantageous in a number of cases to average over a given material type. Each ^ 

represents a physical realization of the system when the cross-sections and the sources are given. 

Each state E can be considered as a mapping that associates a material to each point. Let P=(r,t) 

denote a point in the phase space. Now we can write a=^(P) for the material at point P. The set of 

realizations which result in the presence or absence of material a at P is complete, hence the average 

flux is 

t C ) = E P „ ( P ) 1 ' „ ( X ) (46) 

where x = (P,v). The projector A„(P) projects to those states where material a is in point P: 

M„ t = / d^p,(0iK5) (47) 
X(P)=a 

M^i]; 
A x t ^ — (48) 

where X denotes a set (e.g., the states where at P we have material a) and xcX. 
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V. TECHNIQUES 

There are many different techniques for analyzing neutron transport in non-random media. 

Criticality problems are usually considered in the integro-differential form, source problems are often 

formulated by integral transport equation. There are several numerical techniques as well. The tricks 

applied in neutron transport in random medium often borrow the tools of the above mentioned 

methods. In his works, Sanchez invoked integral transport tools. In Ref [23], two formulae are 

derived for the ensemble averaged flux. The first one is recursive, higher and higher moments are 

involved. In the second, higher and higher derivatives are included. 

Below the renewal equations are reproduced from Ref [23]. The aim is to write the integral 

transport equation in a random medium. Before the derivation we set forth the notation. Let P=(r,t) 

where r is the space coordinate, t is the time. A point in the phase space is x=(P,v), where v is the 

velocity. The angular flux at x is expressed by means of the local sources along the past trajectory. 

Let the trajectory be 

Tr(e,,x) = (Pg = (r-ev,t-0)|ee[O,e,)) , (49) 

where « 

0,(x) = min[e,,(r,v),e,„(t)] . (50) 

Here, 6̂ ^ is the time required for a neutron of velocity v to travel from the boundary to location r, 

and 9,„=t-to. Assume that E, assigns a material a to P, then the local behavior of E, along the past 

trajectory is characterized by the maximum length of time during which a neutron of velocity v 

travels until it reaches point P so that it traverses continuously in material a. Let us define the 

function 6(x) mapping the set of representations of the random medium into the set of positive 

numbers such that 

e jx ) = max(e651Jc>)(P') = co(P),VP'eTr(e,x)). (51) 

Then, for a state E assigning material a to point P, the integral transport equation will be 
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t|ij(x) = H(e5-e,)e""<'"'"$5(x,) 

.H(e,-ej)e-^-'°<>5(xj) ^̂ 2) 
mintej.e,) 

. / dee-'-<^'"F^(x,). 

Here, H is Heaviside's function, T„ is the optical distance along the past trajectory Tr(e,x). F{(x) is 

the emissivity (the extemal + internal source) at position x. The first term is the contribution from 

the boundary (or initial) source, the second from the interface where materia! a changes to another 

material. The third term is the contribution from the point wise source along the trajectory through 

material a. 

The next step is ensemble averaging. The set of the representations having material a at r 

is the sum of two sets, the first set includes representations assigning material a to every point of a 

past trajectory, the second set consists of representations assigning material a to point P, but the 

material changes somewhere along the past trajectory. Formally, that is expressed by 

M ,(P) = M„„(6,x) -H ide'M„(e',x) . (53) 

Here, 

M„„(6,x)f = I dCp,(5)fj (54) 

x„(e.x) 

with support 

X„„(e,x) = {EeX\E(P') = 5(P),VP'6Tr(e,x)) . (55) 

Furthermore, 

M^(±e,x) . ^d,M^^(-.Q,x) . . (56) 
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Let R„(0,x) be the probability for the change of material type to take place after 6. Furthermore, let 

Q,(e,x) = -aeR„(9,x) . (57) 

Now, the ensemble average can be written as 

il;„(x)=e-'^"X(0,.x)1'!':(x,) 

. /e-^-'^'"' X [Q,(e,x)i|;''; . R,(e,x)F:X)] 
(58) 

where 

F ' > e ) =q.(''9) MH„1|;^:)(X9). (59) 

Here, the following ensemble averaged fluxes have been introduced: 

M^(e,x)i 

Vaa- . . ,Q , . • (61) 

Equation (58) gives i|;„ in terms of ilr̂ '̂" and ^^J". The same equation can be used to derive 

equations for yli^J'" and T^^J'' and each of the two new equations introduces two further new 

ensemble averaged fluxes. The resulting system is called a renewal (or renewal like) set of equations. 

No proof is given in Ref [23] that the set of equations can be solved. 

The second approach is obtained by ensemble averaging the kinetic equation. The averaged 

equation will be 

A„(P)L.|; + vS^ij;^ = q„ . H„t|;„ in V 

(62) 
^a = *a on av . 
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Here, A„(P) is the ensemble averaging operator associated with X„(P). As can be shown, operators 

A„(P) and L do not conunute, thus, we have 

A^(P)L - LA„(P) = Q„(x)[A„(x)-A^(P)] 
(63) 

- Q ; ( X ) [ A ; ( X ) - A„(P)]. 

The quantities Q*„(x) measure the ratio at which states enter (+) or leave (-) the set X„(P) as one 

moves with velocity v along the trajectory at P. In terms ofthe probability defined in Eq. (57): 

Q*(x) = e™Q„(±e,x). (64) 

Operators A*„(x) indicate ensemble averaging over the states that locally enter (+) or leave (-) the 

setX„(P). With 

M*(e,x)f 
A fe,x)f = —^ (65) 

M^(e,x)! 

we get 

M*(x)x 

M„(x)x! 

Finally, we arrive at the following ensemble averaged integral equation: 

ti;„(x) =e-'"'''-^'*„(x,) 

| d 6 e -*"''-"|Q;(Xe)t,;(x3)-Q„(Xe)t >3)+F„(Xe)J. 
(67) 



-23-

Here, F„ is the local emissivity. These equations have a similar stmcture to that of the renewal 

equations: we have an infinite system as Y„ is defined in terms of Y^' and ¥„*, likewise in the 

previous method. 

The Monte-Carlo method[32] is another widely applied tool to determine neutron distribution 

in complex geometries. The application of the method to random medium problems needs further 

considerations. 

Consider the stationary transport equation in a realization of a random medium: [32] 

<5(P,D = /"Q(P ')T(P ',P,5)dP' + r$(P ',OK(P,P ',5)dP' . (68) 

That problem is tractable by the Monte Carlo method. The ensemble average flux is obtained from 

the above equation as 

|p(5)O(P,0d$ = ||Q(P')T(P',P,S)dP'p(Dd5 + ||$(P',5)K(P',P,Dp(Dd5dP' . (69) 

If the transfer probabilities T(P',P,0p(5) and K(P',P,0p(5) are known, the above integrals can be 

evaluated by the standard Monte Carlo technique. The only difference is that E is an additional 

coordinate and T(P',P,Op(?) and K(P',P,^)p(5) are replaced by T(R',R) and K(R',R), respectively, 

where R=(P,5), R'=(P',0. Fixing E, is the same as fixing the cross-section at every point. Below we 

investigate the calculation of the probabilities. 

It can be shown that an unbiased estimate for the flux is obtained, if the integral is 

constrained to a homogeneous region, and the boundary of the region is taken into account as a 

source. [32] In order to apply the above observation, the track (P,P') is decomposed into tracks in 

homogeneous regions. Following Ref [23], details of an integral transport theory formulation can 

be worked out, though its practical usefulness is not clear. Another choice is to treat randomness 

as an additional coordinate in the phase space, and to apply the standard Monte Carlo technique. The 

latter approach has been adopted in Refs. [2] and [33], where results for high temperature gas cooled 
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reactor (HTGR) fuel have been demonstrating the practical applicability of the Monte Cario 

technique. 

In the investigated double heterogeneous stmcture,[34,2] two approaches have been tried. 

The first one replaces the heterogeneous structure by an equivalent homogeneous mixture, which, 

as emphasized by Sanchez and Pomraning, and under certain assumptions can be exact. The 

homogenization, however, has been reported to result in serious errors in some cases.[2,33,34] 

As to the recriticality problem, a conservative estimate is to search for the largest eigenvalue. 

It means, we have to find the E that leads to the largest eigenvalue. That problem leads us to seek that 

material distribution from among the possible ones where the eigenvalue is maximum. This is an 

optimization problem, often discussed in connection with core reload pattern optimization. If the 

maximum eigenvalue excludes recriticality the job has been done. In the opposite case, however, we 

have to estimate the probability of the worst case and give some estimation for the probability of 

recriticality. That approach requires further investigations. 

VI. PROPOSAL: CRITICALrrY IN RANDOM MEDIUM 

By a random medium, we mean that the cross-sections depend on a random parameter E and 

-1<^<+1. The corresponding notation is S(r,^). Let ^| be a realization ofthe random variable ^ then 

the corresponding cross-section is S(r,5,). Discrete materials can be realized by a step function in 

the random variable E. e.g., a two component material is 2(r,0=2,(r) if ^<0 and E(r,5)=S,(r) if 5>0. 

First, we formulate the criticality problem in a random medium. To this end, we consider 

the formal solution of the time dependent transport equation with a random operator, in which, 

additionally, the fission term is multiplied with a random scalar to make the ensemble averaged flux 

time independent. This formulation permits one to set up a set of equations for the ensemble 

averaged flux and the criticality parameter. The derivation of the equations start with the usual 

definition of k, when the media is not random. It should be emphasized, however, that the accepted 
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definition of criticality allows for sub- or super-critical states. The critical parameter has, thus, two 

meanings. First, its expectation value tells us the size of the non-stochastic adjustment we need to 

make in order to assure criticality. Second, the random part of the eigenvalue reflects on the 

stochastic aspect of criticality. As the reader might have noted, the criticality defined in the 

Introduction has been abandoned. In Eq. (1), one parameter is sought for each realization to make 

the given realization of the random medium critical. In that formalism, each of the realizations is 

critical i.e., constant in time. 

An equation can be derived to determine the ensemble averaged flux by considering the 

structure of the time dependent problem 

— = M'F(O). (70) 
at 

The solution of which is written as 

l'(t) = e"^"-f(0), (71) 

where T(0) is the initial distribution at t =0. In a random medium M is random, M=M(5), where 

5 is a random variable. Taking the expectation value of both sides we get 

('P(t)) = (e'^')- ¥(0). (72) 

The condition for 'P(t)=Y(0) is 

< ^ " ) T ( 0 ) = 0, n = 0,1 (73) 

Let M = -A -I- kB. By substituting this expression into Eq. (5), we get a set of relations of which the 

first equations are 

(A)T(O) = (kB)l'(O); 
(74) 

<^^)T(0) + <(kB)-'F(0)> = 2(kAB)'i'(0) • 
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When k is expanded into a Taylor series of the random variable E as 

KE) = K + k,5 + .... (75) 

the set of equations can be solved for k ,̂ k, etc. in terms of the autocorrelation functions <A">, <B°> 

and the cross-correlation functions <A"B'">, n,m = 0,1,2,... . As an example, ko and k, are 

determined by 

<A>'P(0) = k(,<B>1'(0) + k,<5B>T(0) (76) 

< A 2 > T ( 0 ) + ko^<B^>1'(0) + 2kf<5^B2>'P(0) = 2k„<AB>'P(0) + 2k,<5AB>1'(0). (77) 

Even the simplest equation with random k has lead to a non-linear eigenvalue problem. It can be seen 

that for causal k, we get the traditional eigenvalue problem. Unfortunately, it is not possible to 

constmct Eq. (77) when the random component ofthe matrix is essential. The problem is in stopping 

at the second order term, which can be substantial. To proceed with more terms is rather 

complicated; the equations are non-linear; the coefficients require the knowledge of higher order 

cross-correlations of the distributions. 

The problem of finding the eigenvalues and eigenvectors of random linear operators is too 

intricate. In practice it suffices to investigate the linear operators in a finite dimensional space where 

matrices replace the linear operators. The problem of finding eigenvalues of random linear matrices 

has been studied.[8,35] To understand the nature of the problem, let us consider a case when M is 

a symmetric, positive matrix. If the perturbation is sufficiently small, those properties remain valid 

for the random matrices as well. When the perturbations are large, the random matrix may even be 

singular. All attempts have failed to find the distribution of the largest eigenvalue of a random 

matrix. The following result is available.[35] If M is a symmetric matrix with probability density 

g(A.|,...,A.„) where A|>...>^„>0, then the joint density distribution ofthe eigenvalues is 
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Tt"<-)'Vx,,...,^„)n(ArV 
'^ . (78) 

r(l(n-i.l)) 

That distribution is of limited use, since the density distribution of the matrix has been formulated 

with the unknown eigenvalues. When the matrix is a Gaussian distribution, its density depends 

solely on the determinant and the trace; both expressible with the eigenvalues. Other available 

results are confined to large symmetric matrices (e.g., Refs. [37,38,38]). 

Brody et al.[8] has investigated many particle systems, however, most of these results are too 

specific. Girko[35] has studied the problem of finding the statistical properties of the eigenvalues 

and eigenvectors for several matrix types. To give the flavor of this approach, we give the results for 

non-symmetric real matrices quoted from Ref [35]. The goal is to solve 

X(OA(E)X-\E) = M(0 , (79) 

where A is a diagonal matrix, X is a non-singular square matrix. To make the solution (i.e., X and 

A) unique and measurable, the columns in matrix X are required to be normalized and the first non

zero element is required to have positive sign, if the element is real; or is required to have a given 

phase, if it is complex. The eigenvalues are ordered in increasing modulus. The method to be 

presented relies on calculating the Jacobian associated with the change of variables. Let the equation 

f(X)=M be given, where f is a one-to-one function on a set L. Furthermore, assume that elements 

of matrix M have a joint probability density distribution p(Z), ZeL. Then the distribution of matrix 

X is p(f(Z))J(Z), where J(Z) is the Jacobian of the mapping f(Z). 

Let M=(m,j) be a real random matrix with density p(X), where X=(Xij) is a real matrix. Let 

the eigenvalues of matrix M be (X -̂i-iPk, X^.-ipn., k=l,s) and ( \ , k=s+l,n-2s). Let (x^+iy ,̂ Xj.-iyt, 

k=l,s) and (z ,̂ k=s-l-l,n-2s) be the eigenvectors. The eigenvalues are ordered according to increasing 

magnitude. Matrix M can be cast, with probability 1, into the form 
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M = T diag 
'K 

r^' \ 
f •\ \ 

,-^'s K 
'^s-l'-'^n-2s (80) 

where T is a non-singular matrix with probability 1. Let K be the group of non-singular real matrices 

B, a o-algebra of Borel subsets of group K, and Uj the eigenvalues of matrix M. Function tp(Ys) 

equals to 1, if the eigenvalue (x^+iy,,, Xk-iyt),k=l,...,s, is among the ordered eigenvalues, and equals 

to zero otherwise. 

and 

Y, = diag 
"i yi 

y i X , 
V • ' I 1 / 

' x , 

, - y s 

y; 

\ 
•x^., • • - ^ - 2 s (81) 

Js(Y,) = i n ( q p - q , ) 

dX = TT dx 
n A A ij 

i = l-̂ n,j=2-=-n 

dY = n dx.dy^ . 

(82) 

(83) 

(84) 

Here q ,̂ (p=l,n) are the eigenvalues of matrix Y .̂ K denotes the following matrix set: 

K = ((Xy)^, = ,: X, Ex; 
l J = 2 

E x ; < = I, i = l-fn) 
j = 2 

(85) 

If there exists the density distribution p(X„) of the random matrix M, then for any subset EeB and 

for any real real a, and p,, (i=l,n) 

[n/21 

P(T„6E,Ree,<a, Ime<p,, i = 1. n) = E c,/p(X„Y^X„')J^(Y^)(p(Y^)|detXJ-"x 

n 

n 
1=1 

i-Ex; 
I i-2 1 

(86) 

dX„dY, 



-29-

where the range of the integral K, is 

{X„EEn K, x, < a,,y, < p,,...,x^<a2^_,, - y^<a23,x^,,<a,^„,0 < p2,.,,̂ ^ ,̂x„.23<a„,0<p„}. (87) 

Constants ĉ  are obtained from a set of linear equations that are given in Ref [35], where also the 

proof is given. 

It should be noted that the density distribution of matrix M, and that of matrix X„, is not the 

same. The evaluation of the integral is feasible only in certain simple cases. To explore the 

usefulness of this requires further careful analysis. 

vn. A PARTICULAR PROBLEM 

This section is devoted to a particular problem when matrix M has a specific form. There 

are situations when we have stationary, but random surroundings, and a maneuver is performed 

which is a random, time dependent process. This is the case, for example, when the effect of bubbles 

are investigated experimentally, or when a control rod moves with a random trajectory and we are 

interested in the neutron field. That situation is described by decomposing the matrix M as 

M = A„ -̂  f(t)A,(0 . (88) 

Here, both AQ and A, are random operators. The discussion presented below is based on the works 

by Isidori and Fliess.[40,41] We assume the initial condition to be causal and given. The ensemble 

averaged flux is expressed by ensemble averages (correlations) of the random operators. The method 

is applicable to any statistics. 

The transport operator is separated as the sum of a time independent and a time dependent 

term. In the latter, the time dependence is in a function f(t) multiplied by an operator A,: 

j ^ a'F(r,t) 
V at 

[Ao(r) + f(t)A,(r)]l'(r,t) . (89) 
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In a widely studied noise analysis problem involving a vibrating absorber, f(t) is the strength of the 

absorber rod, A,(r)=H(x-Xo)a/ax (here H is the step function). The theory is capable of treating 

simultaneously more functions f(t). If the operators Ao(r) and A,(r) are smooth enough, Eq. (89) has 

a unique solution; and there are several methods for finding an approximate solution. 

According to Fliess, the solution to Eq. (89) is given by 

T(r,t) = ^^(r) . E t \ - \ f d 5 v d 5 j 7 „ ( r ) , (90) 
ksO jf , .j„=0 •Jj 

where the indices ]„,...,j^ may have the values 0 or I. Let subscript o corresponds to k=0, this is the 

case where the length ofthe product is zero. In Eq. (90), the solution is given by a sum in which 

each term is derived from the initial state by means of a transition operator. The transition operators 

are classified according to length k. Each operator comprises a space dependent part, which is the 

product of k operators A, and a time dependent part, which is given as an integral. The space 

dependent part is the unit operator when k=0. The integral representing the time dependent part is 

called iterated integral, and is determined by the following relations: 

5o(') = ' (91) 

I 

5,(t) = |f(s)ds (92) 
0 

1 1 s 

/d5 , -d? ,^ = fdE,(s)jdE,^...dE,^, k>l . (93) 
0 0 0 

The iterated integral corresponding to the length k=0 is the real number 1. Let us denote the iterated 

integrals by E,i ,„(t). Then the solution is given as 

1'(r,t) = E E E, ,(t)C. (r)'Fo(r) (94) 
k=0 ij i„=0 ' " 

and the first few terms are * 
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E„ =0;E„ = t ;E^ = tV2; E„„„ = t3/3!; 

(95) 
E, = j'f(s)ds;E„ = |f(s)|f(p)dpds 

0 0 0 

t s 

j |f(p)dpds; 
'̂ oi 

0 0 

(96) 
t 

E|o = rf(s)sds . 

If AQ(r) and A,(r) are smooth, expression (90) can be evaluated. We defer evaluation of operator C. 

That technique is easy to apply to the solution of Eq. (89) with the initial condition 

1'(r,0)=^o(r), because from Eq. (89) the following coefficients of the Taylor expansion are obtained 

for the flux. Comparing that to the expression from the Taylor series Eq. (94), we have : 

'F(r,0) = 'Fo(r); •^(r,0) = (A„(r) + f(0)A,(r))1'(,(r); 

(97) 

• ^ ( r , 0 ) = [A^ + f(0)(A„A, + A,A„) + f(0)A, + f2(0)Af] . 
at^ ^ 

The series Eq. (94) converges for any finite t according to Isidori. The above technique is applicable 

even if Ag or A, are nonlinear. The transient flux is given as a sum, and each additive component is 

a product of a time- and a space dependent term. The time dependent term is given as integrals of 

the f(t) functions. Those integrals are called iterated integrals. 

*-'o...o -^0' *-i •'^i' CQI AgAp 
(98) 

^ 0 0 1 ~ ^ O ' ^ P ^ 1 0 •'^I'^^O' ^ 1 1 " ^ l ^ v 
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The transient solution will contain terms like Ao'"(A,)"Yo(x). Those terms are to provide the space 

dependence of the transient. Since the method has been developed for smooth operators A and B, 

its application to cases when either operator is singular may cause problems. This is the case when 

A, contains a Dirac's delta function. 

Now, let us form the ensemble average ofthe flux to arrive at 

<1'(r,t)> = E E (E, ,,(t)C,̂  ,\T„(r). (99) 
k-O î  i„=0 \ " " "I 

The terms of the above series are arranged into three groups. The first group includes the terms in 

which all subscripts take the zero value, and that part ofthe series is 

e"'""Y„(r) = T„ + <tA„>1'o + <t V2A^>1'„(r) * ... . (100) 

The second group involves terms with all indices equal to one: 

<E,(t)A,>1'o(r) * <E,,(t)A;>1'„ + ... . (101) 

And the third group contains terms with mixed indices: 

<E„,(t)A„A,>'i'„(r) + <E,o(t)A,A„>1'„(r) +..., (101) 

if f(t)=coscot, the first group depicts the time dependent process corresponding to operator Ag. If we 

assume the state at t=0 to be critical, the result of the summation of all terms in the first group is I",,. 

The second term describes the higher temporal harmonics, it includes the modes cos(nwt),n=l,2,.... 

The third group involves powers of cj. 

The final result is that the ensemble averaged flux is obtained as ensemble averaged operators 

applied to the initial distribution. As we see, the average flux is expressed with the help of moments 

of operators A;, and A,. That relation is useful in two ways. First, when the average flux and its 
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correlations are known, we can determine the average and correlations of the involved operator. 

controversially, when the statistics of the involved operator are known, statistics of the flux can be 

predicted. 

Vffl. CONCLUSIONS 

The present work has surveyed investigations concerning the particle (mostly neutron) 

transport in a random medium. Most of the available works have dealt with the source problem. 

The available results can be summarized as follows. Two types of approaches exist. The first 

approach aims at finding master equations.[22,10,27] There are equations for a general time and 

space dependent stochastic medium in Ref [17]. The second approach endeavors to write down an 

equation for the ensemble averaged flux (e.g., Refs. [9] and [23]. Here, the problem is that the 

momenta equations have lead to an infinite system. That system is cut to a solvable size by 

assumptions called closure. Verified closures are available for specific statistics. One of the best 

studied cases is the binary mixture with Markovian statistics.[9,23,17] Prinja studied also normal 

statistics. Other approaches can also be found. [19] Elaborated is the integral transport theory 

approach by R. Sanchez that has helped to understand the depth ofthe problem. The noninitiated to 

the field, as the author, has got the impression that the present status of the area endeavors to provide 

means for understanding better the problem but at present it is hard to see the practical applicability 

of the results. 

The eigenvalue problem has been formulated in a random medium as a natural extension of 

the static eigenvalue problem. Now the eigenvalue is random, its expectation value is always greater 

than zero. The problem is nonlinear as soon as we have a stochastic eigenvalue. The obtained 

problem worth further study. 

There are different models to specify the randomness of the transport operator and to account 

for the correct physical nature of the problem. There are two specific cases when the general particle 
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transport in a random medium can be solved. The first one is when linear perturbation theory is 

applicable.[31] In that case, the autocorrelation function of the flux is determined from a set of 

equations which are tractable with the usual numerical transport methods (e.g., S„, P„, collision 

probability method). The problem discussed by Szatmary[31] is static. There are several questions 

that Szatmary's formalism can answer: consequences of uncertainty in material properties (density, 

enrichment, geometry). The material properties in the previous problems changes slowly (e.g., due 

to burnup). The second specific case is when we have two random operators in the transport 

equation, and those operators may be nonlinear as well, the first one (AQ) is constant in time, the 

other changes with time as a given (random) function of the time (called here f(t)) multiplied by a 

static random operator A,. That problem can be solved explicitly by the iterated integrals. The result 

is given as a series involving three groups of terms. The first group is the evolution due to A ,̂ the 

second involves higher modes of f(t), and the third group contains mixed terms. 

Since the Monte Carlo technique has been designed to solve stochastic problems, we 

investigated also the applicability of standard Monte Carlo programs to describe (static) random 

medium phenomena. The Monte Carlo technique has turned out to be applicable when the operators 

do not depend on time, the randomness of the medium enlarges only the size of the problem but no 

essentially new phenomenon occurs. That conclusion has been confirmed by some HTGR 

calculations as well.[l,2] The Monte Carlo method raises the possibility of a conservative estimation 

of the criticality. To this end the maximum criticality medium has to be selected from among the 

available material distributions. That leads to an optimization problem emerging in core design. 

K . ACKNOWLEDGMENT 

The author is indebted for help of, or consultation with Dr. 1. Lux, Prof I. Pazsit, 

Prof Z. Szatmary, Dr. R. Sanchez, Dr. L. V. Maiorov, and Dr. A. Prinja. Work partially supported 

by KFKI-AEKI, Hungary. 



-35-

X. REFERENCES 

1. L. V. Maiorov, V. I. Brizgalov, Ya. V. Shevelev, G. F. Liman, "The Model ofthe Active Zone 
of the VTGR Reactor and the Calculation Technique of the Physical Characteristics by Monte 
Carlo Method," Kurchatov Institute Internal Report, (1982) in Russian. 

2. M. I. Gurevich and V. I. Brizgalov, "The Neutron Flux Density Calculations by Monte Carlo 
Code for Double Heterogeneity Fuel," in Proc. Reactor Physics and Reactor Computations, 
p. 190, ANS/ENS, Tel Aviv, Israel (1994). 

3. F. Malvagi, R. N. Byrne, G. C. Pomraning and R. C. Sommerville: J. Atmos. Sci.. 50, 2146 
(1993). 

4. E. A. Novikov and Stuart, "Wave Propagation in Random Medium," Izv. Akad. Nauk SSSR, 
Ser. Geofiz., 3, 408 (1964), in Russian. 

5. G. C. Pomraning, "Radiative Transfer in Rayleigh-Taylor Unstable ICF Pellets," Laser and 
Particle Beams, 8, 741 (1990). 

6. C. D. Levermore, G. C. Pormaning, D. L. Sanzo, and J. Wong, "Linear Transport Theory 
in Random Medium," J. Math. Phys., 27, 2526 (1986). 

7. Engleman, "The Eigenvalues of a Randomly Distributed Matrix," Nouvo Cimento, X, 615 
(1958). 

8. T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pandey, and S. Wong, "Random Matrix 
Physics: Spectmm and strength fluctuation," Rev. Mod. Phys., 58, 385 (1981). 

9. G. Pomraning, "Linear Kinetic Theory and Particle Transport in Stochastic Mixtures," 
Worid Scientific, Singapore, China (1991). 

10. A. K. Prinja, "Transport in Random Media with Space-Time Noise," Progress in Nuclear 
Energy, 30.287(1996). 

11. A. K. Prinja and A. Gonzales-Aller, "Particle Transport in the Presence of Parametric 
Noise," to appear in Nucl. Sci. Eng. (1996). 

12. A. K. Prinja, "Renormalized Equations for Transport in Random Media With Parametric 
Noise," in Proc. Int. Conf on Mathematics and Computations, Reactor Physics, and 
Environmental Analysis, 1, 584, ANS/JNS, Portland, OR (1995). 

13. W. Feller, "An Introduction to Propability Theory and Its Applications," Wiley, New York 
(1966). 



-36-

14. R. Sanchez, O. Zuchuat, F. Malvagi and I. Zmijarevic, "Symmetry and Translations in 
Multilateral Line Statistics," J. Quant. Spectrosc. Radiat. Transfer. 51, 801 (1994). 

15. G. C. Pomraning and B. Su, "A Closure for Stochastic Transport Equations," in Proc. Reactor 
Physics and Reactor Computations, p.672, ANS/ENS, Tel Aviv, Israel (1994). 

16. G. C. Pomraning, "Statistics, Renewal Theory, and Particle Transport," J. Ouant. Spectrosc. 
Radiat Transfer. 42, 279 (1989). 

17. D.S. Sahni, "An Application of Reactor Noise Techniques to Neutron Transport Problems in 
Random Medium," Ann. Nucl. Energy, 16, 397 (1989). 

18. O. Zuchuat and R. Sanchez, "A Two-Equation Model for Particle Transport in Renewal 
Statistical Media," in Proc. Int. Conf on Mathematics and Computations, Reactor Physics, and 
Environmental Analysis, 1, 546, ANS/JNS, Portland, OR (1995). 

19. J. Devooght, "Linear Transport in Correlated Stochastic Media," in Proc. Int. Conf on 
Mathematics and Computations, Reactor Physics, and Environmental Analysis, 1, 555, 
ANS/JNS, Portland, OR (1995). 

20. D. Stoyan, W. D. Kendall, and J. Mecke, "Stochastic Geometry and Its Applications," Wiley, 
(1987). 

21. S. Lovejoy, B. Watson, D. Schertzer, and B. Brosamlen, "Scattering in Multifractal Media," in 
Proc. Int. Conf on Mathematics and Computations, Reactor Physics, and Environmental 
Analysis, 1, 750, ANS/JNS, Portland, OR (1995). 

22. D. S. Sahni, "Equivalence of Generic Equation Method and the Phenomenological Model 
forTransport Problems in a Random Medium," J. Math. Phys., 30, 1554 (1989). 

23. R. Sanchez, "Linear Kinetic Theory in Stochastic Media," J. Math. Phys. 30, 2498 (1989). 

24. L. Pal, "Statistical Theory of Chain Reaction in Nuclear Reactors," Acta Phvs. Hung.. XIV, 
p.345 (1962) in Russian. 

25. M. M. R. Williams, "A Stochastic Theory of Particle Transport," Proc. R. Soc. London.358A. 
105(1977). 

26. J. Lewins, "Linear Stochastic Neutron Transport Theory," Proc. R. Soc. London. 362A, 537 
(1978). 

27. I. Pazsit, "Duality in Transport Theory," Ann. Nucl. Energy. 14, 25 (1987). 

28. I. Pazsit, "Dynamic Transfer Function Calculations for Core Diagnostics," Nucl. Sci. Eng.. 112, 
369(1992). 



-37-

29. J. L. Muiioz-Cobo, G. Verdij, I. Tkachenko and A. Escriva, "Evolution Equations for Two-Point 
Correlation Functions in Stochastic Multiplicative Media from a Master Equation Theory," in 
Proc. Int. Conf on Mathematics and Computations, Reactor Physics, and Environmental 
Analysis, 1, 574, ANS/JNS, Portland, OR (1995). 

30. P.A. Mello. "Central Limit Theorem on Groups." J. Math. Phvs. 27,2876(1986). 

31. Z. Szatmary, "Les incertitudes d'origine technologique et les mesures neutronique," CEA 
Cadarache, France (1993). 

32. I. Lux and L. Koblinger, "Monte Carlo Particle Transport Methods: Neutron and Photon 
Calculations," CRC Press, Boca Raton, Florida, (1991). 

33. M. I. Gurevich, V. I. Brizgalov, E. A. Gomin, A. S. Kaminski E. S. Subbotin and V. I. 
Tebin, "Computational and Experimental Researches of the Double Heterogeneous Fuel 
Elements HTGR," Vop. Atomnov Nauki i Tekhniki (VANT), Series FiTYR, 2, 44 (1989), 
in Russian. 

34. R. Sanchez and G. C. Pomraning, A Statistical Analysis ofthe Double Heterogeneity Problem, 
Ann. Nucl. Energy. 18, 371 (1991). 

35. V. L. Girko: Spectral Theory of Random Matrices, Nauka, Moscow, 1988. 

36. Mori F. Tamas and Szekely J. Gabor: Multivariate Statistical Analysis, Miiszaki Kiado, 
Budapest, 1986 in Hungarian. 

37. Z. Fiiredi and J. Komlos: The eigenvalues of random symmetric matrices, Combinatorica, 1, 
233(1981). 

38. D. Jonsson: Some limit theorems for eigenvalues of a sample covariance matrix, J. 
Multivariate Anal. 12, 1 (1982). 

39. K. W. Wachter: The strong limit of random matrix spectra for sample matrices of 
independent elements. Ann. Prob.. 6, 1 (1978). 

40. A. Isidori: Nonlinear Control Systems, Springer, Berlin, 1990. 

41. M. Fliess: Iterated Integrals, Bull. Soc. Math. France, 109, 3 (1981) in French. 



-38-

Literature Added in Print 

G. C. Pomranning: Small Correlation Length Solutions for Planar Symmetry Beam Transport in a 
Stochastic Medium, Ann. Nucl. Energy. 23, 348(1996) 

J. Devooght and O. F. Smidts: Transport of Radionuclides in Stochastic Media: 1. The Quasi 
Assymptotic Approximation, Ann. Nucl. Energy. 23, 6 (1996) 

F. Bailly, J. F. Clouet amd J. Fouque: Parabolic and Gaussian Noise Approximation for Wave 
Propagation in Random Media, SL^M J. Appl. Math. 56, 1445(1996) 

D. A. Dawson and F. C. Papanicolau: A random Wave Process, Appl. Math. Optim., 12, 97(1984) 



-39-

Distribution: 

C. H. Adams 
R. Agrawal 
J. W. Ahrens 
J. C. Beitel 
G. Birgersson 
H. E. Bliss 
R. N. Blomquist 
J. C. Braun 
L. L. Briggs 
J. E. Cahalan 
B. R. Chandler 
L-K. Chang 
R. J. Cornelia 
K. L. Derstine 
F. E. Dunn 
T. H. Fanning 
E. E. Feldman 
E. K. Fujita 
P. L. Garner 
E. M. Gelbard 
K. N. Griimn 
K. C. Gross 
U. R. Hanebutte 
J. P. Herzog 
R. N. Hill 
R. N. Hwang 

Kalimullah 
H. S. Khalil 
R. M. Lell 
H. Ley 
J. J. R. Liaw 
K. Laurin-Kovitz 
R. D. McKnight 
M. Makai (15) 
K. J. Miles 
A. Mohamed 
E. E. Morris 
R. N. Nietert 
Y. Orechwa 
G. Palmiotti 
K. E. Phillips 
P. A. Pizzica 
J. Reifman 
J. Roglans 
R. M. Singer 
T. Sofu 
C. G. Stenberg 
J. A. StiUman 
R. L. Surman 
T. A. Taiwo 
A. M. Tentner 
B. J. Toppel 

R. B. Turski 
R. B. Vilim 
D. C. Wade 
D. K. Warinner 
S. W. Wegerich 
R. A. Wigeland 
A. M. Yacout 
RA Division (15) 
TIS Files 

Y. I. Chang, OTD-ERD, 208 
D. J. Hill, OTD-ERD/INSC, 208 

J. J. Laidler, CMT, 205 

L. W. Deitrich, RE, 208 
D. R. Pedersen, RE, 208 
D. P. Weber, RE, 208 

M. J. Lineberry, TD ANL-W, 774 
S. K. Bhattacharyya, TD, 207 
H. F. McFarlane, TD ANL-W, 774 
R. G. Bucher, TD, 207 

L. C. Walters, ED ANL-W, 752 
D. L. Porter, ED ANL-W, 752 
H. P. Planchon, ED ANL-W, 752 

External Distribution for the ANL-FRA Report Series 

Office of International Nuclear Safety, NE-30, FORS 
Office of Engineering and Technology Development, NE-50 GTN 

(Suokko) 
(Franks) 

Reactor Analysis Division Review Committee: 
R. O. Anderson, Northern States Power Company, Minneapolis 
A. F. Henry, Massachusetts Institute of Technology, Cambridge 
W. G. Kastenberg, University of California, Los Angeles 
J. C. Lee, University of Michigan, Ann Arbor 
V. H. Ransom, Purdue University, West Lafayette 
S. P. Schultz, Yankee Atomic Electric Company, Bolton 

E. Lewis, Northwestern University, Evanston, IL (5) 
W. F. Miller, Jr., Los Alamos National Laboratory, Los Alamos, NM 
ANL-East Library 
ANL-West Library 
DOE-OSTI (2) - Office of Scientific and Technical Information 





ARGONNE NAT tJliA 

0 


